DPP - 6 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

https://youtu.be/U6_IDZCqIGc

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/40

Q 1. If three electric di-poles are placed in some closed surface, then the electric flux emitting from the surface will be-
(a) Zero
(b) positive
(c) Negative
(d) None of these

Q 2. A rectangular surface of 2 metre width and 4 metre length, is placed in an electric field of intensity 20 newton/C, there is an angle of 60° between the perpendicular to surface and electrical field intensity. Then total flux emitted from the surface will be- (In Voltmetre):
(a) 80
(b) 40
(c) 20
(d) 120

Q 3. A sphere of radius 50 cm has a surface charge density of $8.85 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. The electric field near the surface in N / C is-
(a) 8.85×10^{-6}
(b) 8.85×10^{6}
(c) 1×10^{6}
(d) Zero

Q 4. The Earth has an electric field with a magnitude roughly $100 \mathrm{~N} / \mathrm{C}$ at its surface. Assuming there is a point charge at the Earth's center creating this field, how much charge does the earth possess? (Radius of earth $=6371 \mathrm{~km}$)
(a) $450.9 \times 10^{3} \mathrm{C}$
(b) $451.4 \times 10^{6} \mathrm{C}$
(c) $1 \times 10^{3} \mathrm{C}$
(d) $10^{6} \mathrm{C}$

Q 5. In X-Y plane, there is a surface charge density of $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. on a long uniformly charged sheet. A circular loop of radius 0.1 m is placed as that plane of loop makes an angle of 30° with Z axis. Determine the electric flux through the loop
(a) 4 kVm
(b) 4.44 kVm
(c) 500 kVm
(d) 5.55 kVm

Q 6. A point charge q is placed at a distance $\frac{a}{2}$ perpendicular to the above the center of a square of side a. The electric flux through the square is:
(a) $\frac{q}{\varepsilon_{o}}$
(b) $\frac{q}{\pi \varepsilon_{o}}$
(c) $\frac{q}{4 \varepsilon_{o}}$
(d) $\frac{q}{6 \varepsilon_{o}}$

Q 7. The electric field in a region is given by $\vec{E}=a \hat{\imath}+b \hat{\jmath}$. Here a and b are constants. Find the net flux passing through a square area of side L_{o} parallel to y-z plane:
(a) $\sqrt{a^{2}+b^{2}} L_{o}^{2}$
(b) $2 a L_{o}^{2}$
(c) $a L_{o}^{2}$
(d) $(a+b) L_{o}^{2}$

Q 8. A point charge Q is located on the axis of a disc of radius R at a distance b from the plane of the disc (figure). Show that if one-fourth of the electric flux from the charge passes through the disc, then:

(a) $R=b$
(b) $R=\sqrt{2} b$
(c) $R=\sqrt{3} b$
(d) $R=2 b$

Q 9. Two infinite plane parallel sheets, separated by a distance d haveequal and opposite uniform charge densities $+\sigma \&-\sigma$. Electric field at a point between the sheets is:

(a) $\frac{\sigma}{2 \varepsilon_{0}}$
(b) $\frac{q}{\varepsilon_{o}}$
(c) zero
(d) depends on the location of the point

Q 10. The electric intensity due to an infinite cylinder of radius R and having charge q per unit length at a distance $r(r>R)$ from its axis is:
(a) Directly proportional to r^{2}
(b) Directly proportional to r^{3}
(c) Inversely proportional to r
(d) Inversely proportional to r^{2}

Q 11. The electric intensity outside a charged sphere of radius R and surface charge density σ at a distance $\mathrm{r}(\mathrm{r}>\mathrm{R})$ is:(Charge is distributed uniformly over its surface)
(a) $\frac{\sigma R^{2}}{\varepsilon_{o} r^{2}}$
(b) $\frac{\sigma r^{2}}{\varepsilon_{o} R^{2}}$
(c) $\frac{\sigma r}{\varepsilon_{o} R}$
(d) $\frac{\sigma R}{\varepsilon_{o} r}$

hysicsaholics

Q 12. Let $\rho=\frac{Q r^{2}}{\pi R^{5}}$ be the volume charge density at distance r from the centre for a a soild sphere of radius R and charge Q . The electric field at $r=\frac{R}{2}$ from the centre will be:
(a) $\frac{Q}{4 \pi \varepsilon_{O} R^{2}}$
(b) $\frac{Q}{40 \pi \varepsilon_{0} R^{2}}$
(c) $\frac{Q}{8 \pi \varepsilon_{o} R^{2}}$
(d) None of these

Q 13. A spherical volume has a uniformly distributed charge density $2 \times 10^{-4} \mathrm{C} / \mathrm{m}^{3}$. The electric field at a point inside the volume at a distance 4.0 cm from the centre is:
(a) $3.01 \times 10^{5} \mathrm{~N} / \mathrm{C}$
(b) $2.1 \times 10^{5} \mathrm{~N} / \mathrm{C}$
(c) $6.2 \times 10^{5} \mathrm{~N} / \mathrm{C}$
(d) None of these

Q 14. The surface charge density of a thin charge disc of radius R is σ. The value of the electric field at the centre of the disc is $\frac{\sigma}{2 \varepsilon_{0}}$. With respect to the field at the centre, the electric field along the axis at a distance R From the centre of the disc:
(a) reduces by 70.7%
(b) reduces by 29.3%
(c)reduces by 9.7%
(d) reduces by 14.6%

Q 15. Potential difference between centre and the surface of sphere of radius R and uniform volume charge density ρ within it will be:
(a) $\frac{\rho R^{2}}{2 \varepsilon_{o}}$
(b) $\frac{\rho \kappa^{2}}{4 \varepsilon_{0}}$
(c) zero
(d) $\frac{R R^{2}}{\sigma \varepsilon_{0}}$

Q 16. Sphere of radius $\mathrm{a}=1 \mathrm{~m}$ with an empty spherical cavity of radius $\mathrm{b}=0.25 \mathrm{~m}$, has a positive volume charge density $\rho=10^{-6} \mathrm{C} / \mathrm{m}^{3}$. The center of the cavity is at the distance $d=0.5 \mathrm{~m}$ from the center of the charged sphere. Find the electric field intensity at a point inside the cavity:
(a) $18.8 \mathrm{~N} / \mathrm{C}$
(b) $10 \mathrm{kN} / \mathrm{C}$
(c) $18.8 \mathrm{kN} / \mathrm{C}$
(d) depends on the position of the point

Answer Key

Q. 1	a	Q. 2	a	Q. 3	c	Q. 4	a	Q. 5	b
Q. 6	d	Q. 7	c	Q. 8	c	Q. 9	b	Q.10	c
Q.11	a	Q.12	b	Q.13	a	Q.14	a	Q.15	d
Q. 16	c								

