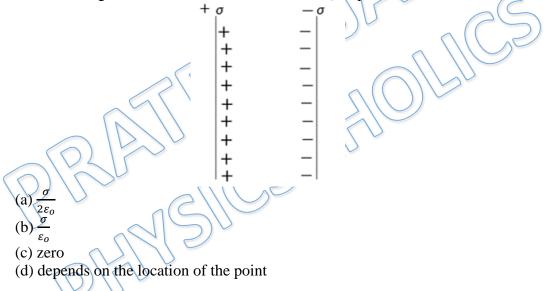
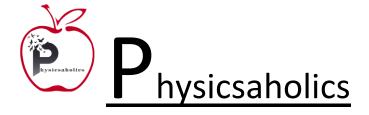

DPP – 6 (Elec	ctrostatics)
---------------	--------------

Video Solution on Website:https://physicsaholics.com/home/courseDetails/51 Video Solution on YouTube:https://youtu.be/U6 IDZCqlGc Written Solution on Website:https://physicsaholics.com/note/notesDetalis/40 Q 1. If three electric di-poles are placed in some closed surface, then the electric flux emitting from the surface will be-(a) Zero (b) positive (c) Negative (d) None of these Q 2. A rectangular surface of 2 metre width and 4 metre length, is placed in an electric field of intensity 20 newton/C, there is an angle of 60° between the perpendicular to surface and electrical field intensity. Then total flux emitted from the surface will be- (In Voltmetre): (b) 40 (c) 20 (a) 80 (d) 120A sphere of radius 50 cm has a surface charge density of 8.85 x 10^{-6} C/m². The electric Q 3. field near the surface in N/C is-(a) 8.85×10^{-6} (b) 8.85×10^6 (c) 1×10^{6} (d) Zero The Earth has an electric field with a magnitude roughly 100 N/C at its surface. Q 4. Assuming there is a point charge at the Earth's center creating this field, how much charge does the earth possess? (Radius of earth = 6371 km) (a) 450.9×10^{3} C (b) 451.4×10^{6} C (c) 1×10^3 C (d) 10⁶ C Q 5. In X-Y plane, there is a surface charge density of $5 \times 10^{-6} C/m^2$. on a long uniformly charged sheet. A circular loop of radius 0.1m is placed as that plane of loop makes an angle of 30° with Z axis. Determine the electric flux through the loop (a) 4 kVm(b) 4.44 kVm (c) 500 kVm (d) 5.55 kVm A point charge q is placed at a distance $\frac{a}{2}$ perpendicular to the above the center of a Q 6. square of side a. The electric flux through the square is: (a) $\frac{q}{\varepsilon_0}$ (b) $\frac{q}{\pi\varepsilon_0}$ (c) $\frac{q}{4\varepsilon_0}$ (d) $\frac{q}{6\epsilon_0}$ The electric field in a region is given by $\vec{E} = a\hat{i} + b\hat{j}$. Here a and b are constants. Find Q 7. the net flux passing through a square area of side L_o parallel to y-z plane: (b) $2aL_o^2$ (a) $\sqrt{a^2 + b^2} L_0^2$ (c) aL_o^2 (d) $(a + b)L_0^2$



Q 8. A point charge Q is located on the axis of a disc of radius R at a distance b from the plane of the disc (figure). Show that if one-fourth of the electric flux from the charge passes through the disc, then:



Q 9. Two infinite plane parallel sheets, separated by a distance d have equal and opposite uniform charge densities $+\sigma$ & - σ . Electric field at a point between the sheets is:

- Q 10. The electric intensity due to an infinite cylinder of radius R and having charge q per unit length at a distance r (r>R) from its axis is:
 - (a) Directly proportional to r^2
 - (b) Directly proportional to r^3
 - (c) Inversely proportional to r
 - (d) Inversely proportional to r^2
- Q 11. The electric intensity outside a charged sphere of radius R and surface charge density σ at a distance r(r > R) is:(Charge is distributed uniformly over its surface)

(a)
$$\frac{\sigma R^2}{\varepsilon_0 r^2}$$
 (b) $\frac{\sigma r^2}{\varepsilon_0 R^2}$
(c) $\frac{\sigma r}{\varepsilon_0 R}$ (d) $\frac{\sigma R}{\varepsilon_0 r}$

- Q 12. Let $\rho = \frac{Qr^2}{\pi R^5}$ be the volume charge density at distance r from the centre for a a soild sphere of radius R and charge Q. The electric field at $r = \frac{R}{2}$ from the centre will be:
 - (a) $\frac{Q}{4\pi\varepsilon_0 R^2}$ (b) $\frac{Q}{40\pi\varepsilon_0 R^2}$ (c) $\frac{Q}{8\pi\varepsilon_0 R^2}$ (d) None of these
- Q 13. A spherical volume has a uniformly distributed charge density $2 \times 10^{-4} C/m^3$. The electric field at a point inside the volume at a distance 4.0 cm from the centre is: (a) $3.01 \times 10^5 N/C$ (b) $2.1 \times 10^5 N/C$
 - (c) $6.2 \times 10^5 N/C$ (d) None of these

Q 14. The surface charge density of a thin charge disc of radius R is σ . The value of the electric field at the centre of the disc is $\frac{\sigma}{2\varepsilon_o}$. With respect to the field at the centre, the electric field along the axis at a distance R From the centre of the disc: (a) reduces by 70.7% (b) reduces by 29.3%

(a) reduces by 70.770	(0) reduces by 29.3%
(c)reduces by 9.7%	(d) reduces by 14.6%

- Q 15. Potential difference between centre and the surface of sphere of radius R and uniform volume charge density ρ within it will be:
 - (a) $\frac{\rho R^2}{2\varepsilon_0}$
 - (c) zero
- Q 16. Sphere of radius a = 1m with an empty spherical cavity of radius b = 0.25m, has a positive volume charge density $\rho = 10^{-6} C/m^3$. The center of the cavity is at the distance d = 0.5m from the center of the charged sphere. Find the electric field intensity at a point inside the cavity:

(a) 18.8 N/C (c) 18.8 kN/C (d) depends on the position of the point

(d)

Answer Key

Q.1 a	Q.2 a	Q.3 c	Q.4 a	Q.5 b
Q.6 d	Q.7 c	Q.8 c	Q.9 b	Q.10 c
Q.11 a	Q.12 b	Q.13 a	Q.14 a	Q.15 d
Q.16 c				